$a$) Ta có:
$\overline{1abc} .2 = \overline{abc8}$
$⇔2. (1000 + \overline{abc}) = \overline{abc}.10 + 8$
$⇔ 2000 - 8 = \overline{abc}.8$
$⇔ 1992 = \overline{abc}.8$
$⇔ \overline{abc} = 249$
Vậy `(a;b;c)=(2;4;9)`
$b$)
Đặt : $a=2+m$ ($m;n ∈ N*$)
$b= 2+n$
$⇒$ $ab = (2+m).(2+n) = 4 + 2m + 2n + mn$
$⇒$ $a+b = (2+m)+(2+n) = 4+m+n$
Vì : $4 + 2m+2n + mn > 4 + m + n$
$⇒$ $a+b < ab$($đpcm$)