Đáp án:
$y = \dfrac{1}{2}x + \dfrac{3}{2}$
Giải thích các bước giải:
$(d): y = ax + b\quad (a \ne 0)$
$(d'): y = \dfrac{1}{2}x + 5$
Ta có:
$(d)// (d') \Leftrightarrow \begin{cases}a = \dfrac{1}{2}\\b \ne 5\end{cases}$
Ta lại có:
$(d)$ cắt $Ox$ tại $x = -3 \Rightarrow y = 0$
$\Leftrightarrow 0 = \dfrac12\cdot (-3) + b$
$\Leftrightarrow b = \dfrac32$ (nhận)
Vậy $y = \dfrac{1}{2}x + \dfrac{3}{2}$