\[\begin{array}{l}
B = \left\{ {x \in R|\,\,{x^2} - 10x + 21{x^3} - x = 0} \right\}\\
{x^2} - 10x + 21{x^3} - x = 0\\
\Leftrightarrow 21{x^3} + {x^2} - 11x = 0\\
\Leftrightarrow x\left( {21{x^2} + x - 11} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \frac{{ - 1 + 5\sqrt {37} }}{{42}}\\
x = \frac{{ - 1 - 5\sqrt {37} }}{{42}}
\end{array} \right.\\
\Rightarrow B = \left\{ {0;\,\,\frac{{ - 1 - 5\sqrt {37} }}{{42}};\,\,\frac{{ - 1 + 5\sqrt {37} }}{{42}}} \right\}.\\
C = \left\{ {x \in Q|\,\,x = \frac{1}{{{2^a}}},\,\,x \ge \frac{1}{{32}},\,\,a \in N} \right\}\\
x \ge \frac{1}{{32}} \Leftrightarrow \frac{1}{{{2^a}}} \ge \frac{1}{{{2^5}}} \Leftrightarrow a \le 5\\
Lai\,\,co\,\,a \in N\\
\Rightarrow a \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}\\
\Rightarrow C = \left\{ {\frac{1}{{{2^5}}};\,\,\frac{1}{{{2^4}}};\,\,\frac{1}{{{2^3}}};\,\,\frac{1}{{{2^2}}};\,\,\frac{1}{2};\,\,1} \right\} = \left\{ {\frac{1}{{32}};\,\,\frac{1}{{16}};\,\,\frac{1}{8};\,\,\frac{1}{4};\,\,\frac{1}{2};\,\,1} \right\}.
\end{array}\]