Đáp án:
$a) x^2 -x -3=0$
$ ⇔x^2 -2 . x . \dfrac{1}{2} + \dfrac{1}{4} -\dfrac{13}{4}=0$
$⇔ (x-\dfrac{1}{2})^2 - \dfrac{13}{4} =0$
$⇔(x-\dfrac{1}{2} -\sqrt[]{\dfrac{13}{4}}) .(x-\dfrac{1}{2}+\sqrt[]{\dfrac{13}{4}})=0$
⇔ \(\left[ \begin{array}{l}x-\dfrac{1}{2}-\sqrt[]{\dfrac{13}{4}}=0\\x-\dfrac{1}{2} +\sqrt[]{\dfrac{13}{4}}=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\dfrac{1+\sqrt[]{13}}{2}\\x=\dfrac{1-\sqrt[]{13}}{2}\end{array} \right.\)
Vậy....
$b) 2x^2 +x -7=0$
$⇔(√2x)^2 +2 . (√2x) . \dfrac{\sqrt[]{2}}{4} + \dfrac{1}{8} -\dfrac{57}{8}=0$
$⇔(√2x-\dfrac{\sqrt[]{2}}{4})^2 - \dfrac{57}{8} =0$
$⇔(√2x-\dfrac{\sqrt[]{2}}{4} -\sqrt[]{\dfrac{57}{8}}) .(√2x-\dfrac{\sqrt[]{2}}{4} +\sqrt[]{\dfrac{57}{8}}) =0$
⇔\(\left[ \begin{array}{l}√2x-\dfrac{\sqrt[]{2}}{4} -\sqrt[]{\dfrac{57}{8}}=0\\√2x-\dfrac{\sqrt[]{2}}{4} +\sqrt[]{\dfrac{57}{8}}=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\dfrac{1+\sqrt[]{57}}{4}\\x=\dfrac{1-\sqrt[]{57}}{4}\end{array} \right.\)
Vậy....
$c) 5x^2 +x-9=0$
$⇔ (√5x)^2 +2 . (√5x) . \dfrac{\sqrt[]{5}}{10} + \dfrac{1}{20} -\dfrac{181}{20} =0$
$⇔(√5x -\dfrac{\sqrt[]{5}}{10})^2 - \dfrac{181}{20} =0$
$⇔(√5x-\dfrac{\sqrt[]{5}}{10} - \sqrt[]{\dfrac{181}{20}}) . (√5x -\dfrac{\sqrt[]{5}}{10} + \sqrt[]{\dfrac{181}{20}})=0$
⇔\(\left[ \begin{array}{l}√5x-\dfrac{\sqrt[]{5}}{10} - \sqrt[]{\dfrac{181}{20}}=0\\√5x -\dfrac{\sqrt[]{5}}{10} + \sqrt[]{\dfrac{181}{20}}=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\dfrac{1+\sqrt[]{181}}{10}\\x=\dfrac{1-\sqrt[]{181}}{10}\end{array} \right.\)
Vậy...
$d) -3x^2 -x+14=0$
$⇔ -3x^2 +6x-7x+14=0$
$⇔-3x(x-2) -7(x-2)=0$
$⇔(x-2)(-3x-7)=0$
⇔\(\left[ \begin{array}{l}x-2=0\\-3x-7=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=2\\x=-\dfrac{7}{3}\end{array} \right.\)
Vậy...
$e)-x+x+17=0$
$⇔ 0x +17=0$
$⇔ 0x=-17 (vô lí)
⇔ x vô nghiệm