Đáp án:
$\begin{array}{l}
a)A = 2\sqrt {27} - 3\sqrt {12} + \sqrt {98} - \sqrt {18} \\
= 2.3\sqrt 3 - 3.2\sqrt 3 + 7\sqrt 2 - 3\sqrt 2 \\
= 6\sqrt 3 - 6\sqrt 3 + 7\sqrt 2 - 3\sqrt 2 \\
= 4\sqrt 2 \\
b)B = \left( {\sqrt {48} - 3\sqrt {27} - 2\sqrt {75} + \sqrt {108} - \sqrt {147} } \right):\sqrt 3 \\
= \left( {4\sqrt 3 - 3.3\sqrt 3 - 2.5\sqrt 3 + 6\sqrt 3 - 7\sqrt 3 } \right):\sqrt 3 \\
= \left( {4\sqrt 3 - 9\sqrt 3 - 10\sqrt 3 + 6\sqrt 3 - 7\sqrt 3 } \right):\sqrt 3 \\
= \left( { - 16\sqrt 3 } \right):\sqrt 3 \\
= - 16\\
c)C = \sqrt {{{\left( {5 - \sqrt 3 } \right)}^2}} + \sqrt {7 - 4\sqrt 3 } \\
= 5 - \sqrt 3 + \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} \\
= 5 - \sqrt 3 + 2 - \sqrt 3 \\
= 7 - 2\sqrt 3 \\
d)D = \dfrac{2}{{\sqrt 3 - 1}} - \dfrac{1}{{\sqrt 3 - 2}} + \dfrac{{12}}{{\sqrt 3 + 3}}\\
= \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} - \dfrac{{\sqrt 3 + 2}}{{3 - 4}} + \dfrac{{12\left( {3 - \sqrt 3 } \right)}}{{9 - 3}}\\
= \sqrt 3 + 1 + \sqrt 3 + 2 + 2.\left( {3 - \sqrt 3 } \right)\\
= 2\sqrt 3 + 3 + 6 - 2\sqrt 3 \\
= 9\\
e)E = \left( {\dfrac{1}{{5 - 2\sqrt 6 }} + \dfrac{2}{{5 + 2\sqrt 6 }}} \right).\left( {15 + 2\sqrt 6 } \right)\\
= \dfrac{{5 + 2\sqrt 6 + 10 - 4\sqrt 6 }}{{\left( {5 - 2\sqrt 6 } \right)\left( {5 + 2\sqrt 6 } \right)}}.\left( {15 + 2\sqrt 6 } \right)\\
= \left( {15 - 2\sqrt 6 } \right).\left( {15 + 2\sqrt 6 } \right)\\
= {15^2} - {\left( {2\sqrt 6 } \right)^2}\\
= 225 - 24\\
= 201\\
f)F = \sqrt[3]{{162}} - \sqrt[3]{{48}} - \sqrt[3]{6} - \sqrt[3]{{ - 0,008}} + \sqrt[3]{{\dfrac{8}{{125}}}}\\
= 3\sqrt[3]{6} - 2\sqrt[3]{6} - \sqrt[3]{6} + 0,2 + \dfrac{2}{5}\\
= \dfrac{1}{5} + \dfrac{2}{5}\\
= \dfrac{3}{5}
\end{array}$