Đáp án: x = 8/3; y = 16/3
Giải thích các bước giải: Điều kiện 4x + 10y ≥ 0; 2x + 2y ≥ 0
Đặt
{ u = √(4x + 10y) ≥ 0 ⇒ u² = 4x + 10y
{ v = √(2x + 2y) ≥ 0 ⇒ v² = 2x + 2y
⇒
{ u² + v² = 6x + 12y = 6(x + 2y) ⇒ x + 2y = (1/6)(u² + v²)
{ uv = √(4x + 10y).√(2x + 2y) = 2√[(2x + 5y)(x + y)] = 2√(2x² + 7xy + 5y²)
Thay tất cả vào HPT đã cho ta có HPT tương đương:
{ u - v = 4
{ (1/6)(u² + v²) + (1/3)uv = 24
⇔
{ u - v = 4
{ (u + v)²= 144
⇔
{ u - v = 4
{ u + v = 12 (vì u; v ≥ 0)
⇔
{ u = 8
{ v = 4
⇔
{ 4x + 10y = 64
{ 2x + 2y = 16
⇔
{ 2x + 5y = 32
{ 2x + 2y = 16
⇔
{ x = 8/3
{ y = 16/3