Đáp án:
\(\left\{ \begin{array}{l}
y = 25\\
\left[ \begin{array}{l}
x = 2\\
x = 0
\end{array} \right.
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:y > 0\\
\left\{ \begin{array}{l}
2\left| {x - 1} \right| - \dfrac{5}{{\sqrt y }} = 1\\
- 2\left| {x - 1} \right| - \dfrac{4}{{\sqrt y }} = \dfrac{{ - 14}}{5}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
- \dfrac{5}{{\sqrt y }} - \dfrac{4}{{\sqrt y }} = 1 - \dfrac{{14}}{5}\\
2\left| {x - 1} \right| - \dfrac{5}{{\sqrt y }} = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
- \dfrac{9}{{\sqrt y }} = - \dfrac{9}{5}\\
2\left| {x - 1} \right| - \dfrac{5}{{\sqrt y }} = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\sqrt y = 5\\
2\left| {x - 1} \right| - \dfrac{5}{{\sqrt y }} = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 25\left( {TM} \right)\\
2\left| {x - 1} \right| = 2
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 25\\
\left| {x - 1} \right| = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 25\\
\left[ \begin{array}{l}
x - 1 = 1\\
x - 1 = - 1
\end{array} \right.
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = 25\\
\left[ \begin{array}{l}
x = 2\\
x = 0
\end{array} \right.
\end{array} \right.
\end{array}\)