Đáp án:
$\begin{array}{l}
a)\left| {\dfrac{1}{2} - x} \right| = 3\dfrac{1}{4} - x\\
\Leftrightarrow \left| {\dfrac{1}{2} - x} \right| = \dfrac{{13}}{4} - x\left( {dk:x \le \dfrac{{13}}{4}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{1}{2} - x = \dfrac{{13}}{4} - x \Leftrightarrow \dfrac{1}{2} = \dfrac{{13}}{4}\left( {ktm} \right)\\
\dfrac{1}{2} - x = x - \dfrac{{13}}{4}
\end{array} \right.\\
\Leftrightarrow 2x = \dfrac{1}{2} + \dfrac{{13}}{4}\\
\Leftrightarrow 2x = \dfrac{{15}}{4}\\
\Leftrightarrow x = \dfrac{{15}}{8}\left( {tmdk} \right)\\
Vậy\,x = \dfrac{{15}}{8}\\
b)\left| {0,6 + x} \right| = x:\dfrac{4}{3}\\
\Leftrightarrow \left| {x + \dfrac{3}{5}} \right| = \dfrac{3}{4}x\left( {dk:x \ge 0} \right)\\
\Leftrightarrow x + \dfrac{3}{5} = \dfrac{3}{4}x\left( {do:x + \dfrac{3}{5} \ge \dfrac{3}{5} > 0} \right)\\
\Leftrightarrow x - \dfrac{3}{4}x = - \dfrac{3}{5}\\
\Leftrightarrow \dfrac{1}{4}x = \dfrac{{ - 3}}{5}\\
\Leftrightarrow x = - \dfrac{{12}}{5}\left( {ktm} \right)\\
Vậy\,x \in \emptyset \\
c)\left| {x - \dfrac{{35}}{7}} \right| = x + \dfrac{3}{{10}}\left( {dk:x \ge - \dfrac{3}{{10}}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x - \dfrac{{35}}{7} = x + \dfrac{3}{{10}}\left( {ktm} \right)\\
x - \dfrac{{35}}{7} = - x - \dfrac{3}{{10}}
\end{array} \right.\\
\Leftrightarrow 2x = \dfrac{{35}}{7} - \dfrac{3}{{10}}\\
\Leftrightarrow 2x = 5 - \dfrac{3}{{10}}\\
\Leftrightarrow 2x = \dfrac{{47}}{{10}}\\
\Leftrightarrow x = \dfrac{{47}}{{20}}\left( {tmdk} \right)\\
Vậy\,x = \dfrac{{47}}{{20}}\\
B2)\\
a)\left| {x - 2} \right| + 3 = 4\\
\Leftrightarrow \left| {x - 2} \right| = 1\\
\Leftrightarrow \left[ \begin{array}{l}
x - 2 = 1\\
x - 2 = - 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 3\\
x = 1
\end{array} \right.\\
Vậy\,x = 1;x = 3
\end{array}$