Đáp án:
d) \(\begin{array}{l}
f\left( x \right) > 0 \Leftrightarrow x \in \left( {1;\dfrac{4}{3}} \right) \cup \left( {2; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {\dfrac{4}{3};2} \right)
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)Xét:f\left( x \right) = 0\\
\to 2020 - 8x = 0\\
\to x = \dfrac{{505}}{2}
\end{array}\)
BXD:
x -∞ 505/2 +∞
f(x) + 0 -
\(\begin{array}{l}
b)Xét:f\left( x \right) = 0\\
\to \left( {x + 1} \right)\left( {3 - x} \right)\left( {6 - x} \right) = 0\\
\to \left[ \begin{array}{l}
x = - 1\\
x = 3\\
x = 6
\end{array} \right.
\end{array}\)
BXD:
x -∞ -1 3 6 +∞
f(x) - 0 + 0 - 0 +
\(\begin{array}{l}
c)Xét:f\left( x \right) = 0\\
\to 9 - {x^2} = 0\\
\to \left[ \begin{array}{l}
x = - 3\\
x = 3
\end{array} \right.
\end{array}\)
BXD:
x -∞ -3 3 +∞
f(x) - 0 + 0 -
\(\begin{array}{l}
d)DK:x \ne 1\\
Xét:f\left( x \right) = 0\\
\to \left( {4 - 3x} \right)\left( {2 - x} \right) = 0\\
\to \left[ \begin{array}{l}
x = \dfrac{4}{3}\\
x = 2
\end{array} \right.
\end{array}\)
BXD:
x -∞ 1 4/3 2 +∞
f(x) - // + 0 - 0 +
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( {1;\dfrac{4}{3}} \right) \cup \left( {2; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ;1} \right) \cup \left( {\dfrac{4}{3};2} \right)
\end{array}\)