Trình bày lời giải:
`a)`
`(x-4)^2=25`
`=>(x-4)^2=(+-5)^2`
`=>[(x-4=5),(x-4=-5):}`
`=>[(x=5+4),(x=-5+4):}`
`=>[(x=9),(x=-1):}`
Vậy `x\in{9;-1}`
`b)`
`(x+9)^2+7=43`
`=>(x+9)^2=43-7`
`=>(x+9)^2=36`
`=>(x+9)^2=(+-6)^2`
`=>[(x+9=6),(x+9=-6):}`
`=>[(x=6-9),(x=-6-9):}`
`=>[(x=-3),(x=-15):}`
Vậy `x\in{-3;-15}`
`c)`
`(x-6)^2le0`
Ta có:
`(x-6)^2ge0forallx`
Mà `(x-6)^2le0`
`=>(x-6)^2=0`
`=>x-6=0`
`=>x=0+6`
`=>x=6`
Vậy `x=6`