Đáp án:
Giải thích các bước giải:
\(\eqalign{
& 1)\,\,y = \left( {2m - 5} \right)x + 3 \cr
& a)\,\,Ham\,\,so\,la\,ham\,\,bac\,\,nhat \Leftrightarrow 2m - 5 \ne 0 \Leftrightarrow m \ne {5 \over 2} \cr
& b)\,\,Ham\,\,so\,\,DB \Leftrightarrow 2m - 5 > 0 \Leftrightarrow m > {5 \over 2} \cr
& \,\,\,\,\,\,Ham\,\,so\,\,NB \Leftrightarrow 2m - 5 < 0 \Leftrightarrow m < {5 \over 2} \cr} \)
\(\eqalign{
& 2)\,\,Xet\,\,\Delta AHC: \cr
& AH = AC.\sin {40^0} \approx 6,23\,\,\left( {cm} \right) \cr
& Xet\,\,\Delta AH: \cr
& BH = AH.\cot {50^0} \approx 5,4\,\,\left( {cm} \right) \cr} \)
\(\eqalign{
& 3)\,\,a)\,\,Ke\,\,AH \bot BC \cr
& Xet\,\,{\Delta _v}AHC:\,\,AH = AC.\sin {50^0} \approx 26,81\,\,\left( {cm} \right) \cr
& Xet\,{\Delta _v}AHB:\,\,\, \cr
& \sin {60^0} = {{AH} \over {AB}} \Rightarrow AB = {{AH} \over {\sin {{60}^0}}} \approx 30,96\,\,\left( {cm} \right) \cr
& Ap\,\,dung\,\,DL\,\,pytago\,\,trong\,\,{\Delta _v}ABC: \cr
& BC = \sqrt {A{B^2} + A{C^2}} \approx 46,72\,\,\left( {cm} \right) \cr
& b)\,\,{S_{\Delta ABC}} = {1 \over 2}AH.BC \approx 626,39\,\,\left( {c{m^2}} \right) \cr} \)