Đáp án:
Giải thích các bước giải:
Bài 1: Tính:
a,(-8) × 25 × (-2) × 4 × (-5) × 125
=[(-2) × (-5)]× (25 × 4) × [(-8) × 125]
=10 × 100 × (-1000)
= (-1000000)
b,19 × 25 + 9 × 95 + 19 × 30
=19 × 25 + 9 × 5 × 19+ 19 × 30
=19 × 25 + 45 × 19+ 19 × 30
=19 × (25 + 45 + 30)
=19 × 100
=1900
c,(-48) + 48 × (-78) + 48 × (-21)
=(-1) × 48+ 48 × (-78) + 48 × (-21)
=(-1 - 78 - 21) × 48
=(-100) × 48
=(-4800)
d,13 × (25 + 22) - 3 × (17 + 18)
=13 × 47 - 3 × 35
=611 - 105
=506
e,29 × (19 - 13) - 19 × (29 - 13)
=29 × 19 - 29 × 13 - 19 × 29 + 19 × 13
=(29 × 19 - 19 × 29) + (19 × 13 - 29 × 13)
=0 + 13 × (19 - 29)
=13 × (-10)
=(-130)
f,17 × (-57) - 23 × 37 - 46 × (-37)
=(-969) - 851 - (-1702)
=(-969) - 851 + 1702
=(-118)
g,(-37 - 17) × (-9) + 37 × (-9 - 11)
=(-54)× (-9) + 37 × (-20)
=486 + (-740)
=486 - 740
=(-254)
h,(-25) × (75 + 45) - 75 × (45 - 25)
=(-25) × 120 - 75 × 20
=(-3000) - 1500
=(-4500)
Bài 2:Tìm x thuộc Z:
a,(x + 3) × (x - 4)=0
⇔\(\left[ \begin{array}{l}x + 3=0\\x - 4=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x =-3\\x =4\end{array} \right.\)
Vậy x ∈ {-3;4} (tmđk x ∈ Z)
b,(x - 1) × (x - 3)=0
⇔\(\left[ \begin{array}{l}x - 1=0\\x - 3=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x =1\\x =3\end{array} \right.\)
Vậy x ∈ {1;3} (tmđk x ∈ Z)