Đáp án:
`1`.
`(5^56+5^7)/(5^49+1)`
`=(5^49. 5^7+5^7)/(5^49+1`
`=(5^7.(5^49+1))/(5^49+1)`
`=5^7`
`2`.
a,
`(1234.5678-1)/(1234.5678)`
`=(1234.5678)/(1234.5678)-1/(1234.5678`
`=1-1/1234.5678`
`(1235.5679-1)/(1235.5679`
`=(1235.5679)/1235.5679-1/1235.5679`
`=1-1/1235.5679`
`=>1235.5679`
`=(1234+1).5679`
`=1234.5679+5679`
`=1234.(5678+1)+5679`
`=1234.5678+1234+5679`
`=1234.5678+6913`
`=>1234.5678<1234.5678+6913`
`=>1/1234.5678>1/(1234.5678+6913)`
`=>1-1/1234.5678<1-1/(1235.5679)`
`=>(1234.5678-1)/(1234.5678)<(1235.5679-1)/(1235.5679`
Vậy `(1234.5678-1)/(1234.5678)<(1235.5679-1)/(1235.5679`.
b,
`=>text(A)=145/72`
`=>text(A)/2=145/144`
`=>text(A)/2=1+1/144`
`=>text(B)=197/98`
`=>\text(B)/2=197/196`
`=>\text(B)/2=1+1/196`
`=>1/144>1/196`
`=>1+1/144>1+1/196`
`=>text(A)/2>\text(B)/2`
`=>text( A > B`
`=>145/72>197/98`
Vậy `145/72>197/98`.