Bài 6 :
\(2\) lần tổng của ba số đó là :
\(11 + 3 + 2 = 16\)
Tổng của ba số đó là :
\(16:2 =8\)
Số \(a\) là :
\(8-3 = 5\)
Số \(b\) là :
\(11-5 =6\)
Số \(c\) là :
\(2 - 5 = -3\)
Đáp số : \(a = 5\) ; \( b= 6\) ; \(c = -3\).
Bài 5 :
a) Số nguyên dương nhỏ nhất là \(1\).
Do đó ta có \(x+4=1\) \(\Rightarrow x = 1-4= -3\).
Vậy \(x=-3\).
b) Số nguyên âm lớn nhất là \(-1\).
Do đó ta có \(10-x=-1\) \(\Rightarrow x = 10 - (-1)= 11\).
Vậy \(x=11\).
Bài 4 :
Ta có : $\left| {x + y} \right| \ge 0$ với mọi \(x,y\) ; $\left| {y-2} \right| \ge 0$ với mọi \(y\)
$\begin{array}{l}
\Rightarrow \left| {x + y} \right| + 2.\left| {y - 2} \right| + 1998 \ge 0 + 2.0 + 1998\\
\Rightarrow \left| {x + y} \right| + 2.\left| {y - 2} \right| + 1998 \ge 1998
\end{array}$
Giá trị nhỏ nhất của \(S\) là \(1998\) và đạt được khi $\left\{ \begin{array}{l}
\left| {x + y} \right| = 0\\
\left| {y - 2} \right| = 0
\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}
x + y = 0\\
y - 2 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = - 2\\
y = 2
\end{array} \right.$