`a)(BL)/(BC)=(AG)/(AH)=2/3`$(thales)$
`=>(BL)/((BC)/2)=2/3=>(B2)/(BC)=1/3`
`b)BKGL` `ω` $\begin{cases}\\\\\end{cases}BK//GL;KG//BL$
`->BKGL` là hình bình hành $(Dhrb)$
`c)BKGL` là hình thoi
`=>BK=BL=(BC)/3`
Mà `BK=GL=(AB)/3`
`=>BK=AG`
Vậy `ΔABC` cân tại $B$