Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\) A B C D \(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\) \(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\). Suy ra \(\overrightarrow{ABC}=135^o\). \(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\) \(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\) Suy ra \(\widehat{ADC}=45^o\) Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\). Vì vậy tứ giác ABCD nội tiếp.