a) $\frac{1}{x-1}$ - $\frac{1}{x+1}$ + $1$
= $\frac{x+1-x+1}{(x-1)(x+1)}$ + $1$
= $\frac{2}{(x-1)(x+1)}$ + $1$
= $\frac{2+(x-1)(x+1)}{(x-1)(x+1)}$
= $\frac{2+x²+x-x-1}{(x-1)(x+1)}$
= $\frac{x²+1}{x²-1}$
b) $\sqrt[]{x-2}$ + $\frac{10-x}{\sqrt[]{x+2}}$
= $\frac{(\sqrt[]{x-2})(\sqrt[]{x+2})+10-x}{\sqrt[]{x+2}}$
= $\frac{\sqrt[]{x²-4}+10-x}{\sqrt[]{x+2}}$