Bài 26 (Sách bài tập - tập 2 - trang 11)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}8x-7y=5\\12x+13y=-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3\sqrt{5}x-4y=15-2\sqrt{7}\\-2\sqrt{5}x+8\sqrt{7}y=18\end{matrix}\right.\)
Bài 27 (Sách bài tập - tập 2 - trang 11)
a) \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x^2-5\left(y+1\right)=\left(2x-3\right)^2\\3\left(7x+2\right)=5\left(2y-1\right)-3x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{3s-2t}{5}+\dfrac{5s-3t}{3}=s+1\\\dfrac{2s-3t}{3}+\dfrac{4s-3t}{2}=t+1\end{matrix}\right.\)
Bài 29 (Sách bài tập - tập 2 - trang 11)
Tìm giá trị của a và b để đường thẳng \(ax-by=4\) đi qua hai điểm \(A\left(4;3\right),B\left(-6;-7\right)\) ?
Bài 30 (Sách bài tập - tập 2 - trang 11)
Giải các hệ phương trình sau theo hai cách
(Cách thứ nhất : đưa hệ phương trình về dạng \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\)
Cách thứ hai : Đặt ẩn phụ, chẳng hạn \(3x-2=s,3y+2=t\) )
a) \(\left\{{}\begin{matrix}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{matrix}\right.\)
Bài 4.3* - Bài tập bổ sung (Sách bài tập - tập 2 - trang 13)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=\dfrac{2}{3}\\\dfrac{yz}{y+z}=\dfrac{6}{5}\\\dfrac{zx}{z+x}=\dfrac{3}{4}\end{matrix}\right.\)
Bài 6 (Sách bài tập - tập 2 - trang 99)
Cho hai đường tròn (O; R) và (O': R) cắt nhau tại A, B. Hãy so sánh R và R' trong các trường hợp sau :
a) Số đo cung nhỏ AB của (O;R) lớn hơn số đo cung nhỏ AB của (O'; R')
b) Số đo cung lớn AB của (O;R) nhỏ hơn số đo cung lớn AB của (O'; R')
c) Số đo hai cung nhỏ bằng nhau.
Bài 8 (Sách bài tập - tập 2 - trang 100)
Trên một đường tròn, có cung AB bằng \(140^0\), cung AD nhận B làm điểm chính giữa, cung CB nhận A làm điểm điểm chính giữa. Tính số đo cung nhỏ CD và cung lớn CD ?
Bài 9 (Sách bài tập - tập 2 - trang 100)
Cho C là một điểm nằm trên cung lớn AB của đường tròn (O). Điểm C chia cung lớn AB thành hai cung AC và CB. Chứng rằng cung lớn AB có số đo cung AB = số đo cung AC + số đo cung CB
Hướng dẫn : Xét 3 trường hợp :
a) Tia OC nằm trong góc đối đỉnh của góc ở tâm AOB
b) Tia OC nằm trùng với tia đối của một cạnh của góc ở tâm AOB
c) Tia OC nằm trong một góc kề bù với góc ở tâm AOB
Bài 1.1 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 100)
Cho hình bs.4. Biết \(\widehat{DOA}=120^0\), OA vuông góc với OC, OB vuông góc với OD
a) Đọc tên các góc ở tâm có số đo nhỏ hơn \(180^0\)
b) Cho biết số đo của mỗi góc ở tâm tìm được ở câu trên
c) Cho biết tên của các cặp cung có số đo bằng nhau (nhỏ hơn \(180^0\))
d) So sánh hai cung nhỏ AB và BC
\(180^0\)
Bài 1.2 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 100)
Cho đường tròn tâm O đường kính AB. Các điểm C, D, E cùng thuộc một cung AB sao cho số đo cung \(BC=\dfrac{1}{6}\) số đo cung BA, số đo cung \(BD=\dfrac{1}{2}\) số đo cung BA, số đo cung \(BE=\dfrac{2}{3}\) số đo cung BA.
a) Đọc tên các góc ở tâm số đo không lớn hơn \(180^0\)
d) So sánh hai cung nhỏ AE và BC
cho đường tròn (O,R) .Vẽ dây AB=R căn 2.Tính số đo cung nhỏ và cung lớn AB
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến