Điểm hạ cánh của một máy bay trực thăng ở giữa hai người quan sát A và B. Biết khoảng cách giữa hai người này là 300m, góc "nâng" để nhìn thấy máy bay tại ví trí A là \(40^0\) và tại vị trí B là \(30^0\) (h.34). hãy tìm độ cao của máy bay ?
Gọi C là vị trí của máy bay.
Kẻ CH⊥ABCH⊥AB
Trong tam giác vuông ACH, ta có:
AH=CH.cotgˆA(1)AH=CH.cotgA^(1)
Trong tam giác vuông BCH, ta có:
BH=CH.cotgˆB(2)BH=CH.cotgB^(2)
Từ (1) và (2) suy ra:
(AH+BH)=CH.cotgˆA+CH.cotgˆB(AH+BH)=CH.cotgA^+CH.cotgB^
Suy ra:
CH=ABcotgˆA+cotgˆB=ABcotg40∘+cotg30∘≈102,606(cm)
Bài 84 (Sách bài tập trang 120)
Tam giác ABC vuông tại A, AB = a, AC = 3a. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC
a) Chứng minh :
\(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)
b) Chứng minh :
\(\Delta BDE\) S \(\Delta CDB\)
c) Tính tổng \(\widehat{AEB}+\widehat{BCD}\) bằng hai cách :
Cách 1 : Sử dụng kết quả ở câu b)
Cách 2 : Dùng máy tính bỏ túi hoặc bảng lượng giác
Bài 90 (Sách bài tập trang 121)
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
a) Tính \(BC,\widehat{B},\widehat{C}\)
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ? Tính chu vi và diện tích của tứ giác AEDF
Bài 91 (Sách bài tập trang 121)
Cho hình thang ABCD có hai cạnh bên là AD và BC bằng nhau, đường chéo AC vuông góc với cạnh bên BC. Biết AD = 5a, AC = 12 a
a) Tính :
\(\dfrac{\sin B+\cos B}{\sin B-\cos B}\)
b) Tính chiều cao của hình thang ABCD
Bài I.1 - Bài tập bổ sung (Sách bài tập trang 123)
Tam giác ABC có \(\widehat{A}=105^0;\widehat{B}=45^0;CB=4cm\). Tính độ dài các cạnh AB, AC ?
Bài I.2 - Bài tập bổ sung (Sách bài tập trang 123)
Cho hình vuông ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của BC, CD. Tính \(\cos\widehat{MAN}\) ?
Bài I.3 - Bài tập bổ sung (Sách bài tập trang 123)
Cho tam giác ABC cân tại A, đường cao BH. Hãy tính góc A và các cạnh AB, BC, nếu biết BH = h, \(\widehat{C}=\alpha\) ?
Bài I.5 - Bài tập bổ sung (Sách bài tập trang 123)
Cho tam giác ABC vuông tại C có \(\widehat{B}=37^0\). Gọi I là giao điểm của cạnh BC với đường trung trực của AB. Hãy tính AB, AC nếu biết BI = 20
Bài 79 (Sách bài tập - tập 2 - trang 114)
Cho nửa đường tròn đường kính AB. Gọi C là một điểm chạy trên nửa đường tròn đó. Trên AC lấy điểm D sao cho AD = CB. Qua A kẻ tiếp tuyến với nửa đường tròn rồi lấy AE = AB (E và C cùng thuộc một nửa mặt phẳng bờ AB)
a) Tìm quỹ tích điểm D
b) Tính diện tích phần chung của hai nửa đường tròn đường kính AB và AE
Bài 78 (Sách bài tập - tập 2 - trang 114)
Cho tam giác AHB có \(\widehat{H}=90^0,\widehat{A}=30^0,BH=4cm\). Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA)
a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB
b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
Bài 77 (Sách bài tập - tập 2 - trang 114)
Tính diện tích của phần gạch sọc trên hình 15 (theo kích thước đã cho trên hình)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến