Bài I.1 - Bài tập bổ sung (Sách bài tập trang 123)
Tam giác ABC có \(\widehat{A}=105^0;\widehat{B}=45^0;CB=4cm\). Tính độ dài các cạnh AB, AC ?
Bài I.2 - Bài tập bổ sung (Sách bài tập trang 123)
Cho hình vuông ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của BC, CD. Tính \(\cos\widehat{MAN}\) ?
Bài I.3 - Bài tập bổ sung (Sách bài tập trang 123)
Cho tam giác ABC cân tại A, đường cao BH. Hãy tính góc A và các cạnh AB, BC, nếu biết BH = h, \(\widehat{C}=\alpha\) ?
Bài I.5 - Bài tập bổ sung (Sách bài tập trang 123)
Cho tam giác ABC vuông tại C có \(\widehat{B}=37^0\). Gọi I là giao điểm của cạnh BC với đường trung trực của AB. Hãy tính AB, AC nếu biết BI = 20
Bài 79 (Sách bài tập - tập 2 - trang 114)
Cho nửa đường tròn đường kính AB. Gọi C là một điểm chạy trên nửa đường tròn đó. Trên AC lấy điểm D sao cho AD = CB. Qua A kẻ tiếp tuyến với nửa đường tròn rồi lấy AE = AB (E và C cùng thuộc một nửa mặt phẳng bờ AB)
a) Tìm quỹ tích điểm D
b) Tính diện tích phần chung của hai nửa đường tròn đường kính AB và AE
Bài 78 (Sách bài tập - tập 2 - trang 114)
Cho tam giác AHB có \(\widehat{H}=90^0,\widehat{A}=30^0,BH=4cm\). Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA)
a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB
b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
Bài 77 (Sách bài tập - tập 2 - trang 114)
Tính diện tích của phần gạch sọc trên hình 15 (theo kích thước đã cho trên hình)
Bài 76 (Sách bài tập - tập 2 - trang 114)
Hai ròng rọc có tâm O, O' và bán kính R = 4a, R'=a. Hai tiếp tuyến chung MN và PQ cắt nhau tại A theo góc \(60^0\) (h.14). Tìm độ dài của dây curoa mắc qua hai ròng rọc ?
Bài 75 (Sách bài tập - tập 2 - trang 114)
Cho tam giác ABC có ba góc nhọn. Dựng điểm M nằm trong tam giác ABC sao cho \(\widehat{AMB}=\widehat{BMC}=\widehat{CMA}\) ?
Bài 74 (Sách bài tập - tập 2 - trang 114)
Cho lục giác đều ABCDEF. Chứng minh rằng đường chéo BF chia AD thành hai đoạn thẳng theo tỉ số 1 : 3 ?
Bài 73 (Sách bài tập - tập 2 - trang 113)
Cho đường tròn đường kính AB. Qua A và B kẻ hai tiếp tuyến của đường tròn đó. Gọi M là một điểm trên đường tròn. Các đường thẳng AM và BM cắt các tiếp tuyến trên lần lượt tại B' và A'
a) Chứng minh rằng \(AA'.BB'=AB^2\)
b) Chứng minh rằng \(A'A^2=A'M.A'B\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến