Biết phương trình \(2{z^2} + 4z + 3 = 0\) có hai nghiệm phức \({z_1},\,\,{z_2}\). Giá trị của \(\left| {{z_1}{z_2} + i\left( {{z_1} + {z_2}} \right)} \right|\) bằng: A.\(\sqrt 3 \) B.\(\dfrac{5}{2}\) C.\(\dfrac{7}{2}\) D.\(1\)
Phương pháp giải: Sử dụng định lí Vi-ét: Phương trình bậc hai \(a{z^2} + bz + c = 0\,\,\left( {a e 0} \right)\) có hai nghiệm phân biệt \({z_1},\,\,{z_2}\) thì \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{b}{a}\\{z_1}{z_2} = \dfrac{c}{a}\end{array} \right.\). Giải chi tiết:Phương trình \(2{z^2} + 4z + 3 = 0\) có hai nghiệm phức \({z_1},\,\,{z_2}\) nên ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - 2\\{z_1}{z_2} = \dfrac{3}{2}\end{array} \right.\). Khi đó ta có: \(\left| {{z_1}{z_2} + i\left( {{z_1} + {z_2}} \right)} \right|\)\( \Leftrightarrow \left| { - \dfrac{3}{2} + i.\left( { - 2} \right)} \right| = \sqrt {{{\left( { - \dfrac{3}{2}} \right)}^2} + {{\left( { - 2} \right)}^2}} = \dfrac{5}{2}\). Chọn B.