Đáp án + Giải thích các bước giải:
`a//(x+2)/(x-2)-(5)/(x)=(8)/(x^{2}-2x)` `(ĐKXĐ:x\ne{2;0})`
`<=>(x(x+2))/(x(x-2))-(5(x-2))/(x(x-2))=(8)/(x(x-2))`
`<=>x(x+2)-5(x-2)=8`
`<=>x^{2}+2x-5x+10=8`
`<=>x^{2}-3x+2=0`
`<=>(x^{2}-2x)-(x-2)=0`
`<=>x(x-2)-(x-2)=0`
`<=>(x-2)(x-1)=0`
`⇔` \(\left[ \begin{array}{l}x-2=0\\x-1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=2(KTM)\\x=1(TM)\end{array} \right.\)
Vậy `S={1}`
`b//2x(x-3)=x-3`
`<=>2x(x-3)-(x-3)=0`
`<=>(x-3)(2x-1)=0`
`⇔` \(\left[ \begin{array}{l}x-3=0\\2x-1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=3\\x=\dfrac{1}{2}\end{array} \right.\)
Vậy `S={3;(1)/(2)}`