Giải thích các bước giải:
\[\begin{array}{l}
{\left( {\sqrt 3 } \right)^{\tan 2x}} = \frac{{3\sqrt 3 }}{{{3^{\tan 2x}}}}\\
\Leftrightarrow {3^{\frac{1}{2}\tan 2x}} = \frac{{{3^{\frac{3}{2}}}}}{{{3^{\tan 2x}}}}\\
\Leftrightarrow {3^{\frac{1}{2}\tan 2x}}{.3^{\tan 2x}} = {3^{\frac{3}{2}}}\\
\Leftrightarrow {3^{\frac{1}{2}\tan 2x + \tan 2x}} = {3^{\frac{3}{2}}}\\
\Leftrightarrow \frac{3}{2}\tan 2x = \frac{3}{2}\\
\Leftrightarrow \tan 2x = 1
\end{array}\]