Bài 1:
a,$S = 1 – 2 – 3 + 4 + 5 – 6 – 7 + 8 + … + 2001 – 2002 – 2003 + 2004 + 2005$
$S$=($1-2-3+4$) +($5-6-7+8$) +.......+($2001 -2002 -2003 + 2004$) + $2005$
$S = 0 + 0 +........+ 0 + 2005$
$S=2005$
Vậy $S=2005$
b,$5x + 13$ là bội của $2x + 1$.
⇒$5x + 13$ ⋮ $2x+1$
⇔$2$($5x + 13$) - $5$($2x+1$)⋮ $2x+1$
⇔$10x + 26 - 10x -5$ ⋮ $2x+1$
⇔ $21$ ⋮ $2x+1$
⇒$2x -1$ ∈ Ư(21)={$±1;±3;±7;±21$}
⇒ $2x$ ∈ {$-20;-6;-2;0;2;4;8;22$}
⇒ $x$ ∈ {$-10;-3;-1;0;1;2;4;11$}
Vậy $x$ ∈ {$-10;-3;-1;0;1;2;4;11$}