Đáp án `+` Giải thích các bước giải `!`
Bài `1:`
`e)`
`6x(x-3y)+2y(3y-x)`
`= 6x(x-3y)-2y(x-3y)`
`= (6x-2y)(x-3y)`
`= 2(3x-y)(x-3y)`
`f)`
`4xy-2x^2+6x`
`= 2x(2xy-x+3)`
Bài `2:`
`a)`
`5x(x-7)-(x-7) = 0`
`<=> (5x-1)(x-7) = 0`
`<=>` \(\left[ \begin{array}{l}5x-1=0\\x-7=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}5x=1\\x=7\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac{1}{5}\\x=7\end{array} \right.\)
Vậy `S= {1/5; 7}`
`b)`
`x(2x+5)+2x+5 = 0`
`<=> x(2x+5)+(2x+5) = 0`
`<=> (x+1)(2x+5) = 0`
`⇔` \(\left[ \begin{array}{l}x+1=0\\2x+5=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-1\\2x=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-1\\x=-\dfrac{5}{2}\end{array} \right.\)
Vậy `S= {-1; -(5)/2}`
`c)`
`6x(3x-5)-3x+5 = 0`
`<=> 6x(3x-5)-(3x-5) = 0`
`<=> (6x-1)(3x-5) = 0`
`⇔` \(\left[ \begin{array}{l}6x-1=0\\3x-5=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}6x=1\\3x=5\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\dfrac{1}{6}\\x=\dfrac{5}{3}\end{array} \right.\)
Vậy `S= {1/6; 5/3}`
Bài `3:`
`c)`
`3x^2+2x = 0`
`<=> x(3x+2) = 0`
`⇔` \(\left[ \begin{array}{l}x=0\\3x+2=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\3x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0\\x=-\dfrac{2}{3}\end{array} \right.\)
Vậy `S= {0; -(2)/3}`