Giải thích các bước giải:
d/ $\dfrac{3x+2}{-32}=\dfrac{-2}{2+3x}$
$\text{ĐKXĐ: $x \neq -\dfrac{2}{3}$}$
$⇔ (3x+2)^2=(-32).(-2)$
$⇔ (3x+2)^2=64$
$⇔\left[ \begin{array}{l}3x+2=8\\3x+2=-8\end{array} \right.$
$⇔ \left[ \begin{array}{l}3x=6\\3x=-10\end{array} \right.$
$⇔ \left[ \begin{array}{l}x=2(TM)\\x=-\dfrac{10}{3}(TM)\end{array} \right.$
g/ $\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.....+\dfrac{2}{x(x+1)}=\dfrac{2}{2013}$
$\text{ĐKXĐ: $x \neq 0$ và $x \neq -1$}$
$⇔ \dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x(x+1)}=\dfrac{2}{2013}$
$⇔ \dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+....+\dfrac{2}{x(x+1)}=\dfrac{2}{2013}$
$⇔ 2(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1})=\dfrac{2}{2013}$
$⇔ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2}{2013}.\dfrac{1}{2}$
$⇔ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1}{2013}$
$⇔ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1}{2013}=\dfrac{2011}{4026}$
$⇔ x+1=\dfrac{4026}{2011}$
$⇔ x=\dfrac{2015}{2011}(TM)$
Chúc bạn học tốt !!!