$\\$
`(x+2022)/100 + (x+2023)/99 = (x+2024)/98 + (x+2025)/97`
`-> (x+2022)/100 + (x+2023)/99 + 2 = (x+2024)/98 + (x+2025)/97 + 2`
`-> ( (x+2022)/100 + 1) + ( (x+2023)/99 +1) = ( (x+2024)/98 + 1) + ( (x+2025)/97 + 1)`
`-> ( (x+2022)/100 + 100/100) + ( (x+2023)/99 + 99/99) = ( (x+2024)/98 + 98/98) + ( (x+2025)/97+97/97)`
`-> (x + 2122)/100 + (x+2122)/99 = (x+2122)/98 + (x+2122)/97`
`-> (x + 2122)/100 + (x+2122)/99 - (x+2122)/98 - (x+2122)/97=0`
`-> (x+2122) (1/100 + 1/99-1/98 - 1/97)=0`
`->x+2122=0` (Do `1/100 + 1/99-1/98 - 1/97 \ne 0`)
`->x=0-2122`
`->x=-2122`
Vậy `x=-2122`