Giải thích các bước giải:
1/ $A=(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}):\dfrac{2(x-2\sqrt{x}+1)}{x-1}$
$\text{ĐKXĐ: $x > 0$ và $x \neq 1$}$
⇔ $A=(\dfrac{x\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-1)}-\dfrac{x\sqrt{x}+1}{\sqrt{x}(\sqrt{x}+1)}).\dfrac{x-1}{2(\sqrt{x}-1)^2}$
⇔ $A=\dfrac{(x\sqrt{x}-1)(\sqrt{x}+1)-(x\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)}.\dfrac{x-1}{2(\sqrt{x}-1)^2}$
⇔ $A=\dfrac{x^2-\sqrt{x}+x\sqrt{x}-1-x^2-\sqrt{x}+x\sqrt{x}+1}{\sqrt{x}.(x-1)}.\dfrac{x-1}{2(\sqrt{x}-1)^2}$
⇔ $A=\dfrac{-2\sqrt{x}+2x\sqrt{x}}{\sqrt{x}}.\dfrac{1}{2.(\sqrt{x}-1)^2}$
⇔ $A=\dfrac{2\sqrt{x}(x-1)}{2\sqrt{x}.(\sqrt{x}-1)^2}$
⇔ $A=\dfrac{(\sqrt{x}-1)(\sqrt{x}+1)}{(\sqrt{x}-1)^2}$
⇔ $A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}$
2/ $\text{Để $A < 0$ thì $\dfrac{\sqrt{x}+1}{\sqrt{x}-1} < 0$}$
$\text{Mà $\sqrt{x} \geq 0$ nên $\sqrt{x}+1 > 0$}$
$\text{⇒ $\sqrt{x}-1 < 0$}$
$\text{⇒ $\sqrt{x} < 1$}$
$\text{⇒ $x < 1$}$
$\text{Vậy để $A<0$ thì $0 < x < 1$}$
3/ $A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}$
$\text{Để A nguyên thì $\dfrac{2}{\sqrt{x}-1}$ nguyên}$
$\text{⇔ $2 \vdots (\sqrt{x}-1)$}$
$\text{⇔ $(\sqrt{x}-1) ∈ Ư_{(2)}=${1; -1; 2; -2}}$
$\text{*) $\sqrt{x}-1=1$ ⇔ $\sqrt{x}=2$ ⇔ $x=4$ (nhận)}$
$\text{*) $\sqrt{x}-1=-1$ ⇔ $\sqrt{x}=0$ ⇔ $x=0$ (KTM ĐKXĐ)}$
$\text{*) $\sqrt{x}-1=2$ ⇔ $\sqrt{x}=3$ ⇔ $x=9$ (nhận)}$
$\text{*) $\sqrt{x}-1=-2$ ⇔ $\sqrt{x}=-1$ (loại)}$
$\text{Vậy}$ `x={4; 9}`
Chúc bạn học tốt !!!