Cho biểu thức: \(P = \frac{{x\sqrt y + y\sqrt x }}{{\sqrt {xy} }} - \frac{{{{\left( {\sqrt x + \sqrt y } \right)}^2} - 4\sqrt {xy} }}{{\sqrt x - \sqrt y }} - y\) (với \(x > 0,\;\;y > 0,\;\;x \ne y\)).
a) Rút gọn biểu thức \(P.\) b) Chứng minh rằng \(P \le 1.\)
A.\(\begin{array}{l}a)\,\,P = 2\sqrt y + y\\b)\,\,P\,\, \le \,\,1\end{array}\)
B.\(\begin{array}{l}a)\,\,P = 2\sqrt y - y\\b)\,\,P\,\, \le \,\,1\end{array}\)
C.\(\begin{array}{l}a)\,\,P = 2\sqrt x - y\\b)\,\,P\,\, \le \,\,1\end{array}\)
D.\(\begin{array}{l}a)\,\,P = \sqrt y - y\\b)\,\,P\,\, \le \,\,1\end{array}\)