$\begin{array}{l} M = \left[ {\dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} - \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} + \dfrac{{3\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}} \right]:\left( {1 - \dfrac{1}{{\sqrt x - 1}}} \right)\\ M = \left[ {\dfrac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 3} \right) - \left( {x - 1} \right) + 3\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}} \right].\dfrac{{\sqrt x - 1}}{{\sqrt x - 2}}\\ M = \dfrac{{x - \sqrt x - 6 - x + 1 + 3\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}.\dfrac{{\sqrt x - 1}}{{\sqrt x - 2}}\\ M = \dfrac{{2\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}.\dfrac{{\sqrt x - 1}}{{\sqrt x - 2}}\\ M = \dfrac{2}{{\sqrt x - 2}} \end{array}$