$a$)
Ta có:
$f(x) = -4x^5 - x^3 + 2x^2 + 8x - 3 + 4x^5 - 8x^2 - 2$
$⇔ f(x) = (-4x^5+4x^5) - x^3 + (2x^2 - 8x^2) + 8x - (3 + 2)$
$⇔ f(x) = -x^3 - 6x^2 + 8x - 5$
$g(x) = 10x^2 - 4x^3 - 8x + 5x^3 - 7 + 8x$
$⇔ g(x) = (-4x^3 + 5x^3) + 10x^2 - (8x-8x) - 7$
$⇔ g(x) = x^3 + 10x^2 - 7$
$b$) $P(x) = f(x) + g(x) = (-x^3 - 6x^2 + 8x - 5) + ( x^3 + 10x^2 - 7)$
$⇔ P(x) = -x^3 - 6x^2 + 8x - 5 + x^3 + 10x^2 - 7$
$⇔ P(x) = (-x^3 + x^3) + (-6x^2 + 10x^2) + 8x - (5+7)$
$⇔ P(x) = 4x^2 + 8x - 12$
$Q(x) = f(x) - g(x) = (-x^3 - 6x^2 + 8x - 5) - ( x^3 + 10x^2 - 7)$
$⇔ P(x) = -x^3 - 6x^2 + 8x - 5 - x^3 - 10x^2 + 7$
$⇔ P(x) = (-x^3 - x^3) - (6x^2 + 10x^2) + 8x - (5-7)$
$⇔ P(x) = -2x^3 - 16x^2 + 8x + 2$
$c$) $P(x) = 4x^2 + 8x - 12$
$⇔ P(x) = 4x^2 - 4x + 12x - 12$
$⇔ P(x) = 4x(x-1) + 12(x-1)$
$⇔ P(x) = (4x+12)(x-1)$
$⇒$ $P(x) = 0 ⇒ (4x+12)(x-1)=0$
$⇒$ $\left[ \begin{array}{l}x=-3\\x=1\end{array} \right. $
Vậy đa thức $P(x)$ có hai nghiệm $x=-3$ và $x=1$.