Đáp án:
$\begin{array}{l}
a)\left( {5{x^2} - 3{x^3} + 15 - 9x} \right):\left( {5 - 3x} \right)\\
= \left( { - 3{x^3} + 5{x^2} - 9x + 15} \right):\left( { - 3x + 5} \right)\\
= \left( {{x^2}\left( { - 3x + 5} \right) + 3\left( { - 3x + 5} \right)} \right):\left( { - 3x + 5} \right)\\
= \left( { - 3x + 5} \right)\left( {{x^2} + 3} \right):\left( { - 3x + 5} \right)\\
= {x^2} + 3\\
b)\left( { - 4{x^2} + {x^3} - 20 + 5x} \right):\left( {x - 4} \right)\\
= \left( {{x^3} - 4{x^2} + 5x - 20} \right):\left( {x - 4} \right)\\
= \left( {{x^2}\left( {x - 4} \right) + 5\left( {x - 4} \right)} \right):\left( {x - 4} \right)\\
= \left( {x - 4} \right)\left( {{x^2} + 5} \right):\left( {x - 4} \right)\\
= {x^2} + 5\\
c)\left( { - {x^2} + 6{x^3} - 26x + 21} \right):\left( {3 - 2x} \right)\\
= \left( {6{x^3} - {x^2} - 26x + 21} \right):\left( { - 2x + 3} \right)\\
= \left( {6{x^3} - 9{x^2} + 8{x^2} - 12x - 14x + 21} \right):\left( { - 2x + 3} \right)\\
= \left( { - 3{x^2}\left( { - 2x + 3} \right) - 4x\left( { - 2x + 3} \right) + 7\left( { - 2x + 3} \right)} \right)\\
:\left( { - 2x + 3} \right)\\
= \left( { - 2x + 3} \right)\left( { - 3{x^2} - 4x + 7} \right):\left( { - 2x + 3} \right)\\
= - 3{x^2} - 4x + 7\\
d)\left( {2{x^4} - 13{x^3} - 15 + 5x + 21{x^2}} \right):\left( {4x - {x^2} - 3} \right)\\
= \left( {2{x^4} - 13{x^3} + 21{x^2} + 5x - 15} \right):\left( { - {x^2} + 4x - 3} \right)\\
= \left( \begin{array}{l}
2{x^4} - 8{x^3} + 6{x^2} - 5{x^3} + 20{x^2} - 15x\\
- 5{x^2} + 20x - 15
\end{array} \right)\\
:\left( { - {x^2} + 4x - 3} \right)\\
= \left( \begin{array}{l}
- 2{x^2}\left( { - {x^2} + 4x - 3} \right) + 5x\left( { - {x^2} + 4x - 3} \right)\\
+ 5\left( { - {x^2} + 4x - 3} \right)
\end{array} \right)\\
:\left( { - {x^2} + 4x - 3} \right)\\
= \left( { - {x^2} + 4x - 3} \right)\left( { - 2{x^2} + 5x + 5} \right):\left( { - {x^2} + 4x - 3} \right)\\
= - 2{x^2} + 5x + 5
\end{array}$