Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\frac{x}{y} = \frac{5}{4}\\
\frac{x}{z} = \frac{5}{3}
\end{array} \right. \to \left\{ \begin{array}{l}
y = \frac{{4x}}{5}\\
z = \frac{{3x}}{5}
\end{array} \right.\\
P = \frac{{x + 2y - 3z}}{{x - 2y + 3z}} = \frac{{x + 2.\frac{{4x}}{5} - 3.\frac{{3x}}{5}}}{{x - 2.\frac{{4x}}{5} + 3.\frac{{3x}}{5}}}\\
= \frac{{x + \frac{{8x}}{5} - \frac{{9x}}{5}}}{{x - \frac{{8x}}{5} + \frac{{9x}}{5}}} = \frac{{5x + 8x - 9x}}{{5x - 8x + 9x}} = \frac{{4x}}{{6x}} = \frac{2}{3}
\end{array}\)