Sửa đề:
$\dfrac{1}{x} + \dfrac{1}{y} \geq \dfrac{4}{x + y}$
Ta có:
$\dfrac{1}{x} + \dfrac{1}{y} \geq \dfrac{4}{x + y}$
$\Leftrightarrow \dfrac{x + y}{xy} \geq \dfrac{4}{x + y}$
$\Leftrightarrow (x + y)^2 \geq 4xy$
$\Leftrightarrow x^2 + 2xy + y^2 \geq 4xy$
$\Leftrightarrow x^2 - 2xy + y^2 \geq 0$
$\Leftrightarrow (x - y)^2 \geq 0$ (luôn đúng)
Vậy $\dfrac{1}{x} + \dfrac{1}{y} \geq \dfrac{4}{x + y}$