Cho \({\left( {1 + 2x} \right)^n} = {a_0} + {a_1}{x^1} + ... + {a_n}{x^n}.\) Biết  \({a_0} + \dfrac{{{a_1}}}{2} + \dfrac{{{a_2}}}{{{2^2}}} + ... + \dfrac{{{a_n}}}{{{2^n}}} = 4096.\) Số lớn nhất trong các số \({a_0},{a_1},{a_2},...,{a_n}\) có giá trị bằng
A.126720.
B.924.
C.972.
D.1293600

Các câu hỏi liên quan