Đáp án đúng: D Quan sát 4 hàm số đã cho ta thấy:• Các hàm số f2(x), f3(x), f4(x): giá trị lớn nhất, giá trị nhỏ nhất đã được khẳng định như sau:Với mọi x, f2(x) = |x| + 1|x| ≥ 2. Đẳng thức xảy ra khi và chỉ khi |x| = 1.Với mọi x, f3(x) = x + 1x ≥ 2. Đẳng thức xảy ra khi và chỉ khi x = 1 hoặc x = -1.Trên khoảng (0 ; +∞), f4(x) = x + 1x ≥ 2. Đẳng thức xảy ra khi và chỉ khi x = 1.Trên khoảng (-∞ ; 0), f4(x) = x + 1x < -2. Đẳng thức xảy ra khi và chỉ khi x = -1.Hàm số f1(x) có chứa các số hạng x2 và 2x nên phân tích được thành tổng, hiệu của một hằng số và một số không âm:f1(x) = (x2 + 2x + 1) + 2 = (x + 1)2 + 2 ≥ 2, ∀x ∈ R; đẳng thức xảy ra khi và chỉ khi x = -1.Vậy chọn hàm số không có giá trị nhỏ nhất là f4(x).