Giải thích các bước giải:
Phương trình đường thẳng AB đi qua A và B là: \(y = 4x - 6\)
Do đó, phương trình đường thẳng vuông góc với AB có pt tổng quát là \(y = - \frac{1}{4}x + a\)
a,
Gọi I là trung điểm AB thì \(I\left( {2;2} \right)\)
Đường thẳng trung trực của AB là đường thẳng đi qua I và vuông góc với AB nên:
\(2.\left( { - \frac{1}{4}} \right) + a = 2 \Rightarrow a = \frac{5}{2}\)
Vậy pt đt trung trực của AB là \(y = - \frac{1}{4}x + \frac{5}{2}\)
b,
Đường thẳng (Δ) đi qua B và vuông góc với AB nên:
\(\left( { - \frac{1}{4}} \right).3 + a = 6 \Rightarrow a = \frac{{27}}{4}\)
Vậy pt đt (Δ) là \(y = - \frac{1}{4}x + \frac{{27}}{4}\)