Đáp án: $\dfrac{a}{(b-c)^2}+\dfrac{b}{(c-a)^2}+\dfrac{c}{(a-b)^2}=0$
Giải thích các bước giải:
Đặt $P=\dfrac{a}{(b-c)^2}+\dfrac{b}{(c-a)^2}+\dfrac{c}{(a-b)^2}$
Ta có:
$\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0$
$\to -\dfrac{a}{b-c}=\dfrac{b}{c-a}+\dfrac{c}{a-b}$
$\to -\dfrac{a}{b-c}=\dfrac{b(a-b)+c(c-a)}{(c-a)(a-b)}$
$\to -\dfrac{a}{b-c}=\dfrac{ab-b^2+c^2-ca}{(c-a)(a-b)}$
$\to -\dfrac{a}{b-c}=\dfrac{(ab-ca)-(b^2-c^2)}{(c-a)(a-b)}$
$\to -\dfrac{a}{b-c}=\dfrac{a(b-c)-(b-c)(b+c)}{(c-a)(a-b)}$
$\to -\dfrac{a}{b-c}=\dfrac{(b-c)(a-b-c)}{(c-a)(a-b)}$
$\to \dfrac{a}{b-c}=\dfrac{(b-c)(-a+b+c)}{(a-b)(c-a)}$
$\to \dfrac{a}{(b-c)^2}=\dfrac{-a+b+c}{(a-b)(c-a)}$
Chứng minh tương tự ta có:
$\dfrac{b}{(c-a)^2}=\dfrac{a-b+c}{(a-b)(b-c)}$
$\dfrac{c}{(a-b)^2}=\dfrac{a+b-c}{(b-c)(c-a)}$
$\to P=\dfrac{-a+b+c}{(a-b)(c-a)}+\dfrac{a-b+c}{(a-b)(b-c)}+\dfrac{a+b-c}{(b-c)(c-a)}$
$\to P=\dfrac{(b-c)(-a+b+c)+(c-a)(a-b+c)+(a-b)(a+b-c)}{(a-b)(b-c)(c-a)}$
$\to P=\dfrac{(b-c)(-a+b)+(b-c)c+(c-a)(a-b)+c(c-a)+(a-b)(a+b-c)}{(a-b)(b-c)(c-a)}$
$\to P=\dfrac{(a-b)(a+b-c)-(b-c)(a-b)+(c-a)(a-b)+((b-c)c+c(c-a))}{(a-b)(b-c)(c-a)}$
$\to P=\dfrac{(a-b)(a+b-c-(b-c)+c-a)+c(b-c+c-a))}{(a-b)(b-c)(c-a)}$
$\to P=\dfrac{(a-b)c+c(b-a))}{(a-b)(b-c)(c-a)}$
$\to P=\dfrac{(a-b)c-c(a-b))}{(a-b)(b-c)(c-a)}$
$\to P=\dfrac{0}{(a-b)(b-c)(c-a)}$
$\to P=0$