Cho a,b tm: \(|a|\ge2; |b|\ge2\) CMR
\(a^2+1)(b^2+1)\ge (a+b)(ab+1)+5\)
*Th1: Xét a;b < 0 thì \(a\le-2;b\le-2\)
khi đó VF âm và VT luôn dương nên BĐT luôn xảy ra.
*Th2: Xét a;b > 0 thì \(a\ge2;b\ge2\).
\(BDT\Leftrightarrow2a^2b^2+2a^2+2b^2+2\ge2\left(ab+1\right)\left(a+b\right)+10\)
\(\Leftrightarrow\left[\left(a+b\right)^2+a^2b^2-2ab\left(a+b\right)\right]+\left(a^2b^2-8ab+16\right)+\left(a^2+b^2-2ab\right)+8ab-2a-2b-24\ge0\)
\(\Leftrightarrow\left(a+b-ab\right)^2+\left(ab-4\right)^2+\left(a-b\right)^2+\left(a-2\right)\left(b-2\right)+7\left(ab-4\right)\ge0\)
( đúng)
Vậy BĐT được chứng minh.
Định m để phương trình có 2 nghiệm x1, x2 biết rằng
\(x^2-4x+m+3=0\) \(\left|x_2-x_1\right|=2\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+xy+y=m+2\\x^2y+xy^2=m+1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất
Tìm gtnn
y=x+căn(4x2+2x+1)
Giải cả bài giùm nha
Cho E={1;2;3;4;5;6} , A={3;6},B={2;3;5}
CMR :
E\(\(A\cap B\)) = (E\A)U(E\B)
E\(AUB)=(E\A)\(\cap\)(E\B)
Cho tam giác ABC có B(9;7), C(11;-1), M và N lần lượt là trung điểm của AB, AC. Tọa độ của \(\overrightarrow{MN}\)
Tìm gtnn,gtln
y=(x2+2x+2)/(x2+2)
Giải phương trình \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Tìm x để P(x) là mệnh đề đúng:
a. P(x): x2 - 3x > 0"
b. P(x): "\(\sqrt{x}\) lớn hơn hoặc bằng x"
Cho x,y,z >0 thỏa mãn x+y+z=1.Tìm GTLN của
Q=\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
C/m bổ đề \(a,b,c>0\) and \(a+b+c=1\). Khi đó \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}}+\dfrac{1}{q}-6\)\(\left(ab+bc+ca=q;1\ge3q>0\right)\) (VQBC)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến