Đáp án:
a) Xét ΔABH và ΔACH vuông tại H có:
+AB = AC
+ AH chung
=> ΔABH = ΔACH (ch-cgv)
=> HB =HC
b) DO ΔABH = ΔACH
=> góc BAH = góc CAH
=> AH là phân giác của góc BAC
c) Xét ΔAHM và ΔAHN vuông tại M và N có:
+ AH chung
+góc HAM = góc HAN
=> ΔAHM = ΔAHN (ch-gn)
=> AM = AN
=> ΔAMN cân tại A
$\begin{array}{l}
\Rightarrow \widehat {AMN} = \widehat {ABC} = \frac{{{{180}^0} - \widehat A}}{2}\\
\Rightarrow MN//BC
\end{array}$