`B=2+2^2+2^3+...........+2^{100}`
`2B=2^2+2^3+2^4+...........+2^{101}`
`2B-B=(2^2+2^3+2^4+...........+2^{101})-(2+2^2+2^3+...........+2^{100})`
`B=2^{101}-2`
`C=5-2^{100}+B`
`C=5-2^{100}+2^{101}-2`
`C=2^{100}(2-1)+(5-2)`
`C=2^{100}+3`
Vậy `C=2^{100}+3`