Đáp án + Giải thích các bước giải:
a) ĐKXĐ : `(x + 1)(x - 1) ne 0 => x ne -1,x ne 1 => x ne pm 1`
b) `A = ((x + 2)/(x + 1) - x/(x - 1) )* (3x + 3)/2` $\\$ `= ([(x + 2)(x - 1)]/[(x + 1)(x - 1)] - [x(x + 1)]/[(x + 1)(x - 1)]) * [3(x + 1)]/2` $\\$ `= [(x + 2)(x - 1) - x(x + 1)]/[(x + 1)(x - 1)] * [3(x + 1)]/2` $\\$ `= (x^2 - x + 2x - 2 - x^2 - x)/[(x + 1)(x - 1)]* [3(x + 1)]/2` $\\$ `=-2/[(x + 1)(x - 1)] * [3(x + 1)]/2 = [-2*3(x + 1)]/[(x + 1)(x - 1)*2] = [-6(x + 1)]/[(x - 1).2] = [-3(x + 1)]/(x - 1)`