Cho biểu thức: \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{\:t+x}{y+z}\) . Tìm giá trị của P biết rằng: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\) .
Theo dãy tỉ số = nhau ta có :
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3x+3y+3z+3t}=\dfrac{1}{3}\)
\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Leftrightarrow3x=y+z+t\) (1)
\(\dfrac{y}{z+t+x}=\dfrac{1}{3}\Leftrightarrow3y=z+t+x\) (2)
\(\dfrac{z}{t+x+y}=\dfrac{1}{3}\Leftrightarrow3z=t+x+y\) (3)
\(\dfrac{t}{x+y+z}=\dfrac{1}{3}\Leftrightarrow3t=x+y+z\) (4)
Từ (1) và (2) => 3x + 3y = x + y + 2(z+t) => 2(x+y) = 2(z+t) => x + y = z + t (5)
Từ (2) và (3) => 3y + 3z = y + z + 2(t + x) => 2(y+z) = 2(t+x) = > y + z = t + x
Vậy P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}=4\)
tính giá trị biểu thức P=\(\dfrac{3x+2y}{x-2y+4}\),biết \(\dfrac{2}{x+1}\)=\(\dfrac{3}{2y-3}\)và x\(e\)-1 ; y\(e\)\(\dfrac{3}{2}\)
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}vax+y+z=49\left(timx,y,z\right)\)
a/ Cho ti le thuc: \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chung minh: \(\dfrac{2a+5b}{3a-7b}=\dfrac{2c+5d}{3c-7d}\)
b/ Cho ti le thuc: \(\dfrac{x}{y}=\dfrac{m}{n}\)
Chung minh: \(\dfrac{5x+4y}{3x-6y}=\dfrac{5m+4n}{3m-6n}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Tìm các số x,y,z biết rằng :
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=x+y+z\)
cho abc khác 0 và \(\dfrac{a-b+c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+c-b}{b}\) Tính P\(=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\) giúp mik nha! help me =='
Cho a, b, c là các số thực khác 0. Tìm các số thực x, y, z khác 0 thỏa mãn
\(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{zx}{cx+az}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Tìm x
\(\dfrac{x-2}{2018}=\dfrac{x-3}{2017}=\dfrac{x-4}{2016}=\dfrac{x-5}{2015}\)
Cho \(\dfrac{b+c-3a}{a}=\dfrac{a+c-3b}{b}=\dfrac{a+b-3c}{c}\)
Tính: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
tìm 2 số a, b biết: 11.a=5.b và a-b=24
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến