cho các số thự x,a,b,c thay đổi thỏa mãn
\(x+a+b+c=7,x^2+a^2+b^2+c^2=13\)
tìm min, max của x
\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)
Mà ta có:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)
\(\Leftrightarrow2x^2-7x+5\le0\)
\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)
Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)
Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)
Cho các số dương a,b,c. Chứng minh rằng: a/b+c + b/c+a + 4c/a+b >2
Cho các số thực dương x,y,z thỏa mãn xyz ≤ 1
CMR:\(\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\)≥ 0
Cho x,y là 2 số thực dương. CMR:
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+y}-\dfrac{x+y}{2}\le\dfrac{1}{4}\)
Cho các số thực x;y;z \(\ge1\) thỏa mãn \(3x^2+4y^2+5z^2=52\). Tìm GTNN của:
F = x + y + z
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 3. CMR:
4(a2 + b2 + c2) - (a3 + b3 + c3) \(\ge9\)
cho x,y,z là các số thực dương thỏa mãn xy+yz+zx\(\ge3\)
cmr \(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{3}{4}\)
Cho x,y,z là 3 số dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\)
Tìm Min của P = \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
Nhớ làm cách dễ hiểu nha!!!
giúp mình hộ câu này nha mọi người
Cho x,y,z là các số tự nhiên thỏa mãn x+y+z=2017
Tìm giá trị lớn nhất của P=xyz
cmr (a^2+1)(b^2)(c^2+1)>=8abc
Chứng tỏ:\(\dfrac{1}{15}\) +\(\dfrac{1}{16}\) +\(\dfrac{1}{17}\) + ... +\(\dfrac{1}{43}\) +\(\dfrac{1}{44}\) > \(\dfrac{5}{6}\)
=> Đây là bài nâng cao có trong bài học kỳ II của mk. Nhưng mk ko được chữa nên bạn nào làm được giảng giùm mk!!!!!!!!
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến