Chứng tỏ:\(\dfrac{1}{15}\) +\(\dfrac{1}{16}\) +\(\dfrac{1}{17}\) + ... +\(\dfrac{1}{43}\) +\(\dfrac{1}{44}\) > \(\dfrac{5}{6}\)
=> Đây là bài nâng cao có trong bài học kỳ II của mk. Nhưng mk ko được chữa nên bạn nào làm được giảng giùm mk!!!!!!!!
\(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{44}=\left(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{29}\right)+\left(\dfrac{1}{30}+\dfrac{1}{31}+...+\dfrac{1}{44}\right)\)
\(>\left(\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\right)+\left(\dfrac{1}{44}+\dfrac{1}{44}+...+\dfrac{1}{44}\right)\)
\(=\dfrac{15}{29}+\dfrac{15}{44}>\dfrac{15}{30}+\dfrac{15}{45}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
C\m Giúp mk vs
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\) Với \(a;b\ge1\)
cho x,y,z>0 va x*y*z=1
cm: (x+y)*(y+z)*(z+x)\(\ge\frac{8}{3}\cdot\left(x+y+z\right)\)
Tìm GTNN của hàm f(x)=2x.(5-3x)
tìm x, y nguyên thỏa mãn đẳng thức:
x^2 - xy -y +2 =0
cmr trong tam giác vuông tại a R\(\ge\) (\(\sqrt{2}\)+1)r
cho a, b, c là 3 số thực dương. cmr \(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{c^2}{a^2b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
chứng minh rằng 2a^3+8a<=a^4+16
Tìm các số nguyên x,y biết xy +x-y-1=1
Mấy bn , a cj và các thầy (cô) giúp với !!
chứng minh rằng (a+b)/(căn(a*(3a+b))+căn(b*(3b+a)) >= 1/2
cho 2 số thực dương a,b CM
ab+a/b+b/a> a+b+1
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến