Giải thích các bước giải:
$\dfrac{2016a+b+c+d}{a}=\dfrac{a+2016b+c+d}{b}=\dfrac{a+b+2016c+d}{c}=\dfrac{a+b+c+2016d}{d}$
$\to \dfrac{a+b+c+d}{a}+2015=\dfrac{a+b+c+d}{b}+2015=\dfrac{a+b+c+d}{c}+2015=\dfrac{a+b+c+d}{d}+2015$
$\to \dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}$
$\to a=b=c=d$
$\to M=4$