Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). a) Chứng minh AMBO là tứ giác nội tiếp. b) Chứng minh MC.MD=$MA^{2}$ c) Chứng minh đường tròn ngoại tiếp tam giác luôn đi qua điểm cố định khác O.

Các câu hỏi liên quan