a) $\widehat{ADB}=\widehat{DBC}$ (so le trong)
$\Rightarrow\dfrac{\widehat{ADB}}{2}=\dfrac{\widehat{DBC}}{2}$
$\Rightarrow \widehat{ODH}=\widehat{OBF}$ (1)
$\widehat{AOD}=\widehat{BOC}$ (đối đỉnh)
$\Rightarrow\dfrac{\widehat{AOD}}{2}=\dfrac{\widehat{BOC}}{2}$
$\Rightarrow \widehat{HOD}=\widehat{FOB}$ (2)
$OD=OB$ (3)
Từ (1), (2) và (3) suy ra $\Delta DOH=\Delta BOF$ (g.c.g)
b) Tương tự chứng minh $\Delta BOE=\Delta DOG$
$\Rightarrow OE=OG$