a) Do E và F là trung điểm của AD và BC và tứ giác ABCD là hình bình hành nên
$AE = \dfrac{1}{2} AD = \dfrac{1}{2} BC = BF$
Lại có AD//BC nên AE//BF
Vậy tứ giác ABFE có AE//BF và AE = BF. Vậy tứ giác ABFE là hình bình hành.
b) GỌi AC giao BD tại O, suy ra O là trung điểm AC và BD.
Do E là trung điểm AD và O là trung điểm BD nên AO và BE là các đường trung tuyến của tam giác ABD, suy ra P là trọng tâm tam giác ABD và
$AP = \dfrac{2}{3} AO = \dfrac{2}{3} . \dfrac{1}{2} AC = \dfrac{1}{3} AC$
CMTT ta cũng suy ra $CQ = \dfrac{1}{3} AC$. Vậy
$PQ = AC - AP - CQ = AC - \dfrac{1}{3} AC - \dfrac{1}{3} AC = \dfrac{1}{3} AC$.
Do đó AP = PQ = QC $( = \dfrac{1}{3} AC)$.