Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\)và \(B\). Biết \(SA \bot \left( {ABCD} \right)\), \(AB = BC = a\), \(AD = 2a\), \(SA = a\sqrt 2 \). Gọi \(E\) là trung điểm của \(AD\). Tính bán kính mặt cầu đi qua các điểm \(S\), \(A\), \(B\), \(C\), \(E\).
A.\(\frac{{a\sqrt 3 }}{2}\).
B.\(a\).
C.\(\frac{{a\sqrt 6 }}{3}\).
D.\(\frac{{a\sqrt {30} }}{6}\).